
Biochemfusion Rendering Tools

Usage and build instructions

2011-01

This document describes how to incorporate the Biochemfusion rendering tools into your own
applications or web pages.

A change log can be found at the end of this document.

1 Renderers
A renderer is a class or function that translates Biochemfusion rendering info text into on-screen
graphics. Biochemfusion rendering info text is specified in the Biochemfusion Rendering Info
format specification which you may download from the Biochemfusion web site.1

Renderers have been implemented in Delphi/Free Pascal2, Microsoft .NET, Adobe Flash, Java, and
JavaScript. You will find a directory for each of these implementations that holds the source code
and example build scripts.

In the test/ directory you will find HTML test pages that show how each renderer implementation
handles rendering info text examples. The pages moltest.html and seqtest.html test molecule
renderers and sequence renderers respectively.

2 HTML encoding
The characters percent, colon, and comma ('%', ':', ',') are already percent-encoded3 in the
rendering info text produced by Proteax in order to simplify parsing.

When embedding rendering info text in an HTML page you may have to do an additional layer of
encoding to ensure that the rendering info text is passed correctly to the underlying
implementation. Each implementation description will have a brief section about HTML encoding.

3 Implementations

3.1 Delphi / Free Pascal
The Delphi version may be compiled with Delphi or Lazarus/Free Pascal. The code was developed
using Delphi 2007 but should work with older Delphi versions too. It has been successfully tested
with Lazarus IDE v0.9.28.2-0 beta on Linux Ubuntu 9.04.

The example projects are RenderPascalMolGraphics.dpr and RenderPascalSeqGraphics.dpr
that produce a bitmap file from an input file containing rendering info text. The applications
created by these projects are used by the script that builds the HTML test pages.

To compile the example projects on Linux use Lazarus's "Convert Delphi Project" button and
the .DPR files should convert smoothly to .LPI files. Before you can compile an .LPI file, open the

Project Inspector and add the LCL package as a Required Package. Then the compile should go
smoothly too - with a single warning that "APPTYPE is not supported by the target OS".

The renderer classes draw their output on a normal TCanvas graphics abstraction. In that respect
they can be used in any context - not necessarily in GUI applications. The graphics can be drawn
on e.g. an off-screen TBitmap (as in the example projects) or on a visual component's canvas.

Scaling
The molecule renderer's graphics size is controlled by the ZoomFactor passed to it.

The sequence renderer's graphics size is controlled by the size (and type) of the font assigned to
the canvas. A larger font will produce larger graphics.

Both renderers can return the graphics bounding box dimensions in pixels through the
BoundingBox() function.

HTML encoding
Not applicable.

3.2 .NET
C# code is found in the dotnet/ directory. As for the Delphi version two example solutions
RenderDotNetMolGraphics.sln and RenderDotNetSeqGraphics.sln generate bitmap files from
an input file containing rendering info text.

The code was developed using Visual Studio 2005 and should run on any Windows system that
has a .NET 2.0 runtime. The code has very few dependencies and may thus compile and work with
Mono4 but no attempt has yet been made to test or verify this.

The code draws graphics on a standard .NET System.Drawing.Graphics abstraction. It has no
dependencies on Windows.Forms or any particular GUI framework.

Scaling
The scaling of the .NET renderers works the same way as the Delphi renderers above.

HTML encoding
Not applicable.

3.3 Flash
The Flash version has been created in ActionScript 3. Adobe's Flex Builder 2 SDK was used to
build the final .SWF files. Example build scripts can be found in make_mol.bat and
make_prot.bat.

Scaling
Both the molecule and the sequence renderer will scale the graphics to fit the size of the stage
area. The sequence renderer will however only scale the width of the graphics and will add a
scrollbar to accomodate a larger height. The molecule renderer has no such abilities at present.

HTML encoding
Plus-signs, ampersands, and double quotes need escaping to survive all the way from the web
page to the Flash component.

Double quotes can be encoded as either '"' or '%22'. Ampersands can however not be
encoded as '&' - they must be percent-encoded as '%26'. So for consistency's sake it is
recommended to use only percent-encoding when passing data to the Flash components.

For an encoding example, see moltest.html line 29.

3.4 Java
The Java version builds with a JDK version 1.5 or higher.

The example applets are the simplest possible wrappers that enable the renderers to be used in a
web page.

Scaling
The molecule renderer will scale its vector graphics to zoomFactor. The renderer assumes that the
caller will have scaled the font size to match zoomFactor.

The protein renderer will scale its graphics to match the font size of the graphics context. This is
the same behavior as the Delphi and .NET renderers.

Both type of renderers have a boundingBox() function that returns the dimensions of the graphic
bounding box in pixels.

HTML encoding
When passing rendering info text to a Java applet via a <param> tag double quotes need to be
encoded as '"' (percent-encoding them as '%22' does not work). Otherwise no additional
encoding seems to be necessary.

For an encoding example, see moltest.html line 34.

3.5 JavaScript
The JavaScript renderers require a browser with Canvas support. This means most current
browsers except Internet Explorer. Firefox, Chrome, Safari, and the browsers on iPhones and
Android phones should be OK.

The renderers draw the graphics on the canvas element that has the id given by the canvas_id
parameter.

Scaling
The molecule renderer will scale both its vector graphics and font to the zoomFactor.

The protein renderer graphics size is controlled by the font_height parameter which sets the font
size used to draw the sequence.

If you set the scale_canvas parameter to true the canvas element will have its dimensions reset

to match the bounding box of the graphics.

HTML encoding
Assuming that you embed the data as JavaScript code, single or double quotes will need to be
backslash-escaped.

This type of quote escaping is done in make_mol_tests.py line 23.

4 Building the HTML test pages
If you want to build the HTML test pages yourself follow these instructions. You will no doubt have
to do minor changes to the build scripts to make the scripts match your local paths.

 Delete all files and directories in the test/ directory - except for the two .PY and the
two .HTML files.

 Compile the two Delphi example projects.

 Compile the two .NET example solutions.
 Note that the Python scripts in test/ per default uses the Debug version of the

compiled .NET applications.

 Compile the Flash components if you want to update the .SWF files.
 The make_mol.bat and make_prot.bat scripts do this.

 Compile the Java renderers and applets and copy the compiled classes to test/.
 The make_mol.bat and make_seq.bat scripts do this.

 Go to the test/ directory and run the Python scripts make_mol_tests.py and
make_seq_tests.py.
 The moltest_data.js and seqtest_data.js files with test data are generated.
 The Delphi and .NET example applications are called to produce a bitmap file for each

of the rendering info text examples. The produced bitmap files are then referenced by
the HTML test pages.

 You should now be able to open the moltest.html and seqtest.html test pages and
compare the renderer graphics.

5 Change log

2011-01-14
 Fixed a NumberFormatException thrown by the Java molecule renderer when pseudo

atoms did not have associated chain numbers. This will be the case when Proteax
generates molecule rendering info text directly from a V2000 condensed molfile. Ensured
that all renderers will use a consistent pseudo atom coloring in this case.

2010-12-27
 First release.

6 References

(1) The Rendering Info format specification can be freely downloaded from
http://www.biochemfusion.com/doc/Biochemfusion_RenderingInfo_formats_1.0.pdf.

(2) Free Pascal's web site is http://www.freepascal.org/. The Lazarus IDE can be found at
http://www.lazarus.freepascal.org/.

(3) Percent-encoding is commonly used for URI data: http://en.wikipedia.org/wiki/Percent-
encoding.

(4) The Mono project http://www.mono-project.com/Main_Page aims to provide an open source
implementation of C# that is binary compatible with Microsoft .NET.

http://www.mono-project.com/Main_Page
http://en.wikipedia.org/wiki/Percent-encoding
http://en.wikipedia.org/wiki/Percent-encoding
http://www.freepascal.org/

	1 Renderers
	2 HTML encoding
	3 Implementations
	3.1 Delphi / Free Pascal
	Scaling
	HTML encoding

	3.2 .NET
	Scaling
	HTML encoding

	3.3 Flash
	Scaling
	HTML encoding

	3.4 Java
	Scaling
	HTML encoding

	3.5 JavaScript
	Scaling
	HTML encoding

	4 Building the HTML test pages
	5 Change log
	2011-01-14
	2010-12-27

	6 References

